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The localization of ligand-based valence holes in the tetrahedral complex ion 
[CrO4] 2- in a crystalline environment is studied by SCF calculations on the 
hole states, with progressively less restrictions on the spatial symmetry of the 
molecular orbitals. The final wavefunctions are obtained by constructing, from 
the symmetry broken SCF solutions, wavefunctions that exhibit again the 
proper  transformation properties under the operations of  Ta. The crystal 
environment of the [CrO4] 2- anion is represented by a point charge model. 
In contrast with the situation for core hole states, the projection afterwards 
into Td symmetry is important. The final ionization energies, which are 
obtained from projected C3~, adapted SCF solutions, are reduced considerably 
(-~3 eV) with respect to the Td ASCF results, but the ordering of the states 
has not changed essentially. The calculated ionization energies compare 
favourably with results of  XPS experiments on Na2CrO4. The evaluation of 
the energies of  projected symmetry broken SCF solutions requires the calcula- 
tion of hamiltonian matrix elements between determinantal wavefunctions 
built f rom mutually non-orthogonal orbital sets. An efficient method for the 
calculation of such matrix elements is presented. 
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1. Introduction 

In an earlier paper  [ 1] we discussed the localization of holes in molecular systems 
containing spatially equivalent sites as an example of  a situation in which the 

* Dedicated to Professor J. Kouteck~ on the occasion of his 65th birthday 
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relaxation of symmetry constraints on one-particle states and consequently on 
self-consistent fields can have drastic consequences. This "symmetry breaking" 
has been discussed more recently in reviews by Davidson and Borden [2] and 
Goscinsky [3]. These papers contain a number  of  important references that will 
not all be repeated here, but to which the reader is referred for a more thorough 
introduction to the subject. In [1] the case of  oxygen ls  holes in the tetrahedral 
complex ion CrO]-  in a crystalline environment was treated in detail. Here we 
report the results of  a similar investigation of a number  of  valence hole states. 
It is worth noting in advance, however, two points of  difference between the 
description of core hole states and valence hole states. 

The first point concerns the one-particle model that was introduced in [1] in 
order to elucidate in simple physical terms the driving forces that may lead to 
symmetry breaking in hole states. In this model quantum mechanical delocaliz- 
ation effects compete with, essentially classical, polarization effects. In the case 
of  the ls  hole states the model could easily be used to predict the occurrence of 
hole localization and to estimate the magnitude of localization energies in various 
cases. This is because the l s  hole states are energetically so well separated from 
other hole states that a model involving only one state per oxygen site is quite 
adequate. For the valence hole states this is not so. Since the valence orbitals 
contain oxygen 2s and 2p as well as chromium 3d, 4s and 4p contributions, the 
model would have to be extended to take these states into account. However, 
the large number  of  adjustable parameters such an extension would require 
renders the model less attractive. 

For the sake of interest we have studied the predictions of  the tetrahedral model 
of [1] for the case where only the oxygen 2p states are considered. That is, instead 
of one core state X~ we now have two valence states X~ and X~ per site (i). The 
two delocalization parameters (b x and b~) that are needed in this case were 
obtained by calculating the o-(2p) and rr(2p) hole states of  the system [02] 4- in 
a way similar to that used for the core hole states in [1]. The parameters then 
follow from 1 2 + 2 + 1 2 + b~=~{E(  2 g ) - E (  ~ , )}-~1 eV and b~=~{E(  ~Ig)-E(21-[+)}~ 
0.3 eV. The polarization parameter/3 (neglecting the difference in shape between 
a 2p~ and a 2p~ hole on oxygen) was estimated in a way completely similar to 
that described in [1], resulting in/3 - 0 . 6  eV. From these data it can be concluded 
that even for the lowest lying valence hole states localization cannot be neglected, 
although its effects will be less pronounced than in the case of  l s  hole states. 
More specifically, the numerical evaluation of the model predicts the lowest hole 
state in Td symmetry to transform as t 2 and to consist of  90% 2p~ orbitals i.e. 
2p orbitals that are directed along a three-fold axis of  the oxygen tetrahedron. 
This state is unstable with respect to symmetry lowering and the lowest states 
then obtained correspond essentially to the four possible 2p~ holes on the oxygen 
sites, each transforming as al under one of the four C3~ subgroups. By carrying 
out SCF calculations on a hypothetical system of four tetrahedrally arranged 
oxygen anions, [O4] 8-, we have found these predictions to be correct. As we shall 
see later on, the interference of the metal orbitals leads to a quite different 
situation in the CrO2 anion. Although localization does occur and the lowest 
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valence hole states are indeed found under C3~ symmetry, the localized hole 
states now correspond to the four equivalent pairs of 2p~ holes on the oxygen 
sites, each transforming as e under C3~. 

The second point of difference between valence hole states and core hole states 
lies in the necessity of  constructing, out of  the manifold of localized SCF 
wavefunctions obtained, wavefunctions that exhibit the proper transformation 
properties under the operations of Ta and then evaluating their energies. In the 
case of the ls  hole states this step could safely be left out in view of the very 
small magnitude of both overlap and hamiltonian matrix elements between the 
geometrically equivalent, but differently oriented, localized states. For the valence 
hole states this is no longer justified. We have therefore carried out the necessary 
symmetry projections, followed by the computation of the corresponding energy 
expectation values. Whenever the projections led to states of the same symmetry 
designation we have also carried out non-orthogonal configuration interaction 
calculations (NOCI) in order to make the final ion states mutually orthogonal 
as well as non-interacting. This type of calculation is not trivial, particularly when 
large basis sets are involved [4-9]. The methods we have employed to make these 
calculations practical are outlined in the appendix to this paper. 

2. Self-consistent field calculations in various symmetries 

The computational information (geometry, basis sets, incorporation of crystal 
environment) supplied in [1] also pertains to the spin-restricted SCF calculations 
to be reported here. The higher occupied orbital part of the ground state configur- 
ation i s . . .  5t2) 6 1 e) 4 6al) 2 6t2) 6 I tl) 6. Hence, in Ta symmetry, the lowest ion states 
are expected to be connected with these orbitals, which are predominantly 
composed of oxygen 2p orbitals. Only 5t2 and le  contain substantial metal 3d 
contributions, 42% and 31%, respectively. The Koopmans'  ionization energies 
(negative orbital energies) belonging to these orbitals are listed in Table 1 together 
with the ASCF results obtained from independent SCF calculations on the 
corresponding hole states 2T b 2T2, 2A1 and 2E in Ta symmetry. The second 27"2 
hole state (5t2 -1) could not be brought to convergence but its energy was estimated 
by assuming that the relaxation energy with respect to the Koopmans'  energy of 
5t2 is the same as that of le  (0.83 eV). We see that the relative position of the 
levels predicted by the ground state orbital energies is preserved in the ASCF 
results. The lowest ionization energy is, however, calculated to be 7.8 eV, which 
differs substantially from the measured first ionization energy lying between 5 
and 6 eV [10, 11]. The calulcated relaxation energies are all of  the order of 1 eV 
as is usual for ligand-based ionizations in transition metal compounds [12]. The 
results obtained without the Madelung potential have been included in Table 1 
to show that this potential hardly influences the relaxation behaviour. The results 
of hole state calculations in lower symmetries than Ta can also be found in Table 
l. They are pictorially displayed in Fig. la. It is seen that the hole state energy 
is considerably lowered because of the increased relaxation freedom offered by 
the reduction of symmetry constraints. This effect is greater when the lower 
symmetry allows the hole to become maximally localized (Table 2). Thus the 
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Table 1. Valence hole state energies (eV) of CrO42- with respect to the ground state 

Symmetry State -e  a ASCF a -e  b ASCF b 

T d ZT 2 4.78 (3.94) r 12.88 (12.05) c 
2E 4.21 3.37 12.37 11.54 
2T 2 2.10 1.41 10.21 9.53 
2A 1 2.08 0.97 10.15 9.02 
27,1 0.40 -0.33 8.55 7.83 

C3v 2A 1 -0.58 7.50 
2A 2 -1.11 7.05 
2E -2.11 6.04 

C2~ ZAl 0.43 8.51 (8.69) d 
2A 2 -0.56 7.60 (7.47) 
2B L -1.47 6.68 (6.88) 
2B 2 -1.47 6.68 (6.77) 

a Madelung potential not included 
b Madelung potential included 
c Estimated (see text) 
d Results with the real Madelung field of Na2CrO4 of C2~ symmetry 

lowest hole state is found  under  C3~ symmetry.  It t ransforms as 2E and represents 
essentially the two-fold degenerate 2p= hole that can be created on any of  the 
oxygens. The 2A 1 state found  in this symmetry  is also well localized (Table 2) 
and corresponds to an oxygen 2p~ hole. The energy of  this state is higher than 
that of  the 2p= hole state, in contrast to what  is found  for the hypothet ical  048- 
system referred to in the Introduct ion.  The results o f  ASCF calculations on the 
O ] -  system are displayed in Fig. lb. Compar ing  the Td levels with those of  Fig. 
la,  we see that the 2T2 and 2E hole state energies for CrO4 are shifted upwards  
with respect the ZT1 state, in accordance  with the metal (3d) - l igand  (2p) bonding  
interactions that stabilize the t2 and e orbitals with respect to the non-bond ing  
t~ orbital. 

To the gross atomic open  shell populat ions  o f  Table 2 we have added,  for each 
case listed, the differences between the total gross atomic populat ions  of  the 
various hole states and those of  the g round  state. This is done to show that, in 
spite of  the well-localized character  o f  the symmetry broken hole orbitals them- 
selves, the overall hole distribution in the final states has a much less localized 
appearance,  because o f  the compensat ing charge shifts taking place in the closed 
valence shells. 

3. Projection of proper symmetry states 

A broken symmetry,  many  electron, wavefunct ion ]HI, iK), t ransforming as the 
Kth row of  the irreducible representat ion i o f  a subgroup Hx of  the molecular  
poin tgroup G, is a member  of  a set o f  equivalent, non-or thogonal ,  broken 
symmetry functions generated from I/4t, iK) by subjecting this funct ion to all 
operat ions o f  (3. By construct ion this set spans a representat ion of  G which will 
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Fig. 1. a Valence hole state energies (Iv) of  CrO 2- with respect to the ground state for Ta, C3v and 
C2~ symmetries, b Same energies for a hypothetical 048- system for T a and C3~. The 2 T  I s t a t e  has 
been shifted to coincide with that of a. The very similar shifts of the 2T 2 and 2E states due to bonding 
interactions have been indicated by dashed lines 

in genera] be reducible. In the case of valence hole states, the hamiltonian matrix 
elements between the difterent members of this set cannot be neglected. 

Instead of setting up the hamiltonian matrix and subsequently diagonalizing it, 
the irreducible components IG, jA)iK of the set can be found first by means of 
group projection operators O~ 

IG, jA),K J~ = OclH, ,  iK). (1) 

The corresponding energy eigenvalues can then directly be evaluated from 
ja ~ j ,  <H,, i , , IHO~f8, ,  i,,) 

"~mK= (H, , "  Jx (2) tKIOcIH,, iK) 
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Table 2. Gross atomic populations of valence hole states of CrO4 z 

Symmetry State Open shell populations Difference population Qdiff a 

Cr 01 0 2 Cr O 1 0 2 

T d 2E 1.00 0.50 0.50 -0.12 -0.22 -0.22 
2T 2 0.52 1.12 1.12 -0.08 -0.23 -0.23 
2A 1 0.04 0.24 0.24 -0.08 -0.23 -0.23 
2T 1 - -  1.25 1.25 - -  -0.25 -0.25 

C3v b 2A 1 0.09 0.88 0.01 -0.12 -0.28 -0.20 
2A 2 - -  - -  0.33 +0.06 -0.19 -0.29 
2E 0.06 2.76 0.06 -0.01 -0.39 -0.20 

C2v e 2A 1 0.10 0.43 0.02 -0.08 -0.28 -0.18 
2A 2 - -  0.26 0.24 +0.04 -0.26 -0.26 
2B1, 2B 2 0.02 0.48 0.01 +0.04 -0.33 -0.19 

a Q d i f f  = Q h o l e  s t a t e -  Q g r o u n d  state 
b Equal populations on 02, 03 and 04 
c Equal populations on 01, 03 and on 02, 04 

Specializing to the case at hand, we have from the C3~ calculations (Table 1) the 
sets {1C3~, A~)}4, {[ C3v, A2)}4 and {[ C3v, E)}8 with dimensions as indicated by the 
lower indices outside the brackets. Their irreducible compositions under Td are, 
respectively, {A1, T2}, {A2, T1} and {E, Ta, T2}. Basis functions of the form (1) 
that span these representations can be expressed in terms of two simplified group 
operators O § and O-: 

0 IC3~,A~), IT a, A~)AI= + 

[r~ A~)A~ = O§ A~), 

ITd, E,)~,-- o§ EJ, 

ITs, T21)A1 = O-IClv, A~) 

ITs, Tll)A2 = O-[Clv, A2) 

T,~, T1,)E2= O-ICL, E2) 

ITa, T2,)E~ = O-]C~, E~) 

where 

O + = (1 + C2y)(1 + C2~)/4, 0 +2 = 0 + 

O - = ( 1 - C 2 y ) ( l + C 2 z ) / 4 ,  0 - 2 = 0  - 

(3) 

(4) 

and C2y and C2z represent rotations of ~ around the two-fold symmetry axis y 
and z of Fig. 2. In (3) the subgroup C~v has its three-fold axis in the (111) 
direction. The E1 component in this subgroup is chosen to be invariant with 
respect to reflection in the symmetry plane defined by the z-axis and the (111) 
direction and the E2 component changes sign under this operation. 

For each of the degenerate Ta representations only one component is needed. 
These are indicated as Eb T2~ and Tu in (3) and they transform respectively as 
the second degree polynomial 2z 2 -  x 2 -  y2, a polar vector in the z-direction and 
an axial vector in the z-direction. We note that T2~ and Tn both appear twice 
as a result of  the projection of the three sets of C3v solutions. Hence there remains 
a residual two by two interaction to be considered for each of these species. 
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Fig. 2. Coordinate system and atomic positions 
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4. Eva luat ion  o f  the energy  o f  projected states  

The evaluation of  the energy expressions (2) and the removal of  the residual 
interactions between projected states with the same symmetry designation require 
the calculation of hamiltonian and metric matrix elements between determinantal 
wavefunctions Aa and Ab built from different, mutally non-orthogonal, molecular 
spin orbital sets {a~}, {bj} both of dimension N (where N is the number of 
electrons). The matrix elements of hermitian one- and two-electron operators 1)~ 
and ~)~ between these determinants 

11 = <Ao[ E n~lA~> (5) 
m 

6:(Ao[ Y~ n.~lA~) (6) 
v > / x  

can be written as [13] 

I, = E E (a~[l~,[b))S(i,j) (7) 
i j 

/2 = ~ X (a,ak[~121bjb,)S(ik, jl). (8) 
k>i  l>j  

In these expressions S(i, j)  and S(ik, jl) denote respectively the first and second 
order cofactors of the square matrix of overlap integrals Sij = (ailbj). The symbol 
~12 indicates that direct and exchange contributions to the two electron interaction 
are included. When dealing with many electrons and large basis sets, as we do 
here, the calculation of  12 by a straighforward application of Eq. (8) is hardly 
feasible. Firstly, the two-electron integrals must be obtained by a four index 
transformation on the list of integrals over basis functions. In principle this must 
be repeated for all different pairs of orbital sets {a~} and {bj}. Secondly, the 
second order cofactors S(ik, jl), another four index array, must be calculated 
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and stored. Prosser and Hagstrom [4] have shown how the calculation can be 
carried out efficiently. King et al. [5] recommended the use of corresponding 
orbitals in order to reduce the cofactor supermatrix to diagonal form. One is 
then left with obtaining the appropriate two-electron integral list for each matrix 
element. Hayes and Stone [8] and Figari and Magnasco [9] have simplified the 
expressions for the case that many matrix elements are needed, over many Slater 
determinants which differ by only a few orbitals. However the task of transforming 
the basic two-electron integrals remains. 

This is not the case in our approach. For non-singular overlap matrices S the 
Jacobi theorem [14] can be used for a simple calculation of the second order 
cofactor super matrix (dimension N 4) from the first order cofactor matrix 
(dimension N2): 

S( ik, jl) = 2(1 - p,k)S( ij)S( kl)/ISI. (9) 

Here the operator Pig interchanges the indices i and k, IS I is the determinant of 
S. Van Montfort  [15] has shown that for singular matrices S, the second order 
cofactors can also be written in a factorized form, although the two-dimensional 
matrices are no longer first order cofactors. Furthermore, the two electron matrix 
element can be written in terms of an arbitrary basis set {X} which is appropriate 
for the expansion of the spin orbitals appearing in Aa and Ab : 

I2= ~ (XpXrI~121XqXs)B(pr, qs) (10) 
p,q,r ,s  

where B(pr, qs) is a transformed second order cofactor. Hence the necessary 
transformation is now carried out on the cofactors instead of the two-electron 
integrals. This yields a considerable simplification since the B(pr, qs) still have 
a factorized form so that only two-index transformations are required. In the 
apendix to this paper we will prove this result in an alternative way. 

5. Results 

The results of  the calculations of the energies of  the projected C3~ states and of 
the subsequent NOCI calculations for the 2T1 and 2T2 states are displayed in 
Fig. 3. The percentage weight of the projected functions in the resolution of their 
respective parent states is indicated in parentheses. The Td and C3~ ionization 
energies of Table 1 and the results of XPS [10] and X-ray emission [16] experi- 
ments on Na2CrO4 are included to facilitate comparisons. As expected carrying 
out the projections is important. The NOCI calculations are of importance only 
for the higher 27"2 state that is shifted upward by 0.72 eV. The relevant matrix 
elements for this calculation are given in Table 3. The overlap between the two 
2T1 states is very large so that one of the new states is pushed far upwards while 
the other remains close to the original lower state. Although the higher-lying 
state represents a true upper bound for an excited 27"1 state, it cannot be considered 
as a good approximation to it since the orbitals used are close to being optimal 
only for the lower state. For the 2A2 state resulting from the projection of the 
C3v 2A2 states a similar statement can be made. This state is interesting since it 
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Table 3. (a) Matrix elements between normalized wavefunctions,/9, belonging to the degenerate sets 
{1C3v, ik>} 

i k =<DIC2ylD> (DIC2~ID> (DIHCa~ID> (D[I-IC2~ID> <DIHID> 
<DIC2xID) =<DIC2yID> (hanrees) +1342.0 

(hartrees) (hartrees) 

A 1 0.109738 0.109738 -147.324226 -147.324226 -0.399472 
A 2 -0.299513 -0.299513 402.080895 402.080895 -0.419313 
E 1 -0.064486 -0.357004 86.575458 479.296985 -0.455844 
E 2 -0.259498 0.033020 348.389809 -44.331717 -0.455844 

(b) Energies obtained after symmetry projection (E pr~ and non-orthogonal configuration interaction 
(EN~ 5 

i (C3~) i (Ta) EPr~ 1342.0 EN~ 1342.0 Ionization energy 
(hartrees) (hartrees) (eV) 

A 1 A 1 -0.42704 6.78 
T 2 -0.38607 -0.36411 8.49 

A 2 A 2 -0.17149 13.73 
T 1 -0.42571 -0.04645 17.13 

E E -0.36418 8.49 
T~ -0.49069 -0.49695 4.87 
T 2 -0.42664 -0.43112 6.66 

has no counterpar t  in the frozen orbital or ASCF collection o f  states. It cannot  
be obtained by a simple orbital ionization process but  requires a s imultaneous 
excitation to configurations o f  the type e) 2 a*) 1, e) 3 t2) 5 t*) 1 or e) 3 tl) 5 t*) 5, for 

example. 

The final ionization energies obtained are reduced considerably (3 eV) with 
respect to the Ta ASCF results, but  the ordering o f  the states is not  essentially 
changed.  

6. Comparison with experiment 

The XPS spectrum of  Na2CrO4 has been reported by Connor  et al. [10], that  o f  
Li2CrO4 by Prins and Novakov  [11]. Since the M a d d u n g  potential  used in our  
calculations is based u p o n  the crystal data  o f  Na2CrO4, the valence part  of  the 
spectrum of  this c o m p o u n d  is reproduced in Fig. 3. The inclusion of  the potential 
allows an absolute compar i son  to be made  between calculated and measured 
ionization energies. The overall agreement  between the posi t ion o f  the projected, 
symmetry-broken,  hole states and the experimental  data  is satisfactory. Connor  
et al. [10] have combined  the X-ray emission data  of  Best [16] and Fisher [17] 
with their own measurements  of  metal and oxygen core ionization energies. Their 
conclusions concerning the posit ion o f  the final valence hole states taking part  
in the X-ray emission are included in Fig. 3, together  with an indication of  the 
initial states involved. Note  that the third (metal K )  and fourth (oxygen K)  
levels actually refer to the same final state and should therefore coincide. The 
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fact that they do not is indicative of the error margins that should be kept in 
mind when comparing the emission data with the XPS results. These authors 
also attempted to assign the four final emission states to specific molecular orbital 
hole states. These assignments were based on relative intensities, calculated by 
means of the valence and core orbitals obtained from a small basis set SCF 
calculation on the ground state of the CrO 2- anion. Thus they associate the four 
levels in increasing order of energy with holes created in the le, l t l ,  6t2 and 5t2 
valence molecular orbitals, respectively. The assignment of 2 E  to the lowest hole 
state, however, is inconsistent with their own calculated orbital energy pattern 
as well as with our results displayed in Fig. 2, as well as the results of other 
theoretical studies [18, 19]. In fact we see no conceivable way for the 2E state, 
that appears consistently as the highest or nearly highest of the group of valence 
hole states, to become the lowest of these states by a more elaborate configuration 
interaction treatment. On the other hand, intensity calculations based on ground 
state orbitals may well be inadequate in this case. Generally, the relaxation of 
the wave function of the hole states involved in the X-ray transitions should be 
taken into account. 

7. Concluding remarks 

In this paper we have concentrated on a broken symmetry approach to the 
description of certain excitations and ionizations in systems with spatial symmetry. 
It was shown that when the energetic effects accompanying localization and 
delocalization respectively are of comparable magnitude, projection onto properly 
symmetrized final wave functions is essential. Since only a small number of 
non-orthogonal components usually appear, the method described to calculate 
the hamiltonian matrix elements makes the use of such projected functions a 
fairly routine matter. We note, however, that certain CI approaches based on the 
usual symmetrized occupied and virtual orbital spaces obtained in symmetry 
restricted SCF procedures may offer valuable and perhaps equally efficient 
alternatives. Benard et al. [20] have shown for valence hole states of transition 
metal dimers that energy lowerings with respect to a symmetry restricted SCF 
solution obtained by either relaxing the symmetry constraints or by CI based on 
internal single and semi-internal double excitations in the valence shell are 
comparable in magnitude. This type of CI has also been successfully used by 
Janssen and Nieuwpoort in describing crystal field and charge transfer states in 
solid NiO [21, 22]. The importance of translation symmetry breaking in order to 
obtain a good first order description of 3d-related excitations is emphasized in 
earlier work on CuC1 and CuBr [21, 23]. 

Appendix: Matrix elements between determinants based on different 
non-orthogonal orbital sets 

Consider two determinantal N electron wave functions ( N  = N + +  N- ) :  

Aa ( N  ' 1 /2  + + + + o l a ~ f l a f f l . . ,  a N  t91 : ) a l O ~ a  2 o ~ .  �9 �9 a N 

A b  = ( N ! ) - ' / 2 l b [ a b ~  ol " " " b+N + o l b ; f l b ; f l  " " " b - u - ~ l .  

(11) 

(12) 
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The superscripts ~r = + , -  indicate that the spin orbitals a+a and a~-fl may have 
different orbital parts. The orbital overlap integrals S~ = (a7[ b;) may have non- 
zero values for all i and J. For spin independent operators f~l and ill2 the 
integrations over the spin coordinates in eqs. 7 and 8 (section 4) can be carried 
out beforehand, so that: 

11 = ~ Y, (a+[~l[b+)S+( i , j)D- + 2 ~ (a~]~llbj)S-( i,j)D + (13) 
i j  i j  

12 = ~ E {(a~a~l(~12[bfb~f)S+(ik, jl) D-  
k > i  l > j  

+ (aFak[~,2]b;b~)S-(ik, j l )P +} 

+ ~ Y~ (a +ak[fl~2]b+b[)S+(i,j)S-(k, l). (14) 
i d k , l  

Here S'~(i,j) and S~(ik, jl) denote first and second order cofactors of the orbital 
overlap matrices S r D ~ is the determinant of S ~. 

As an intermediate step in deriving the final equations we employ the correspond- 
ing orbitals of Amos and Hall [24]. The corresponding orbitals can be obtained 
by performing a unitary transformation on the orbital sets {a ~} and {b~}: 

c7 = Z a; u;, (15) 
J 

d?=X b[V)~ (16) 
J 

where U ~ and V ~ are the matrices that diagonalize (S~)(S~)? and (S~)?(S~), 
respectively. The overlap matrices between the new sets of  orbitals are diagonal 

(cTld~) = h76ij. (17) 

Since the transformations leave the wave functions A, and Ab unchanged, we have 

11=Y(c,  Is + I] X,,,]] h ~ + E  ( c ; - [ ~ d d ; - ) +  I] h~,[I A, + (18) 
i m •  n i m •  n 

and 

I2 = Y, (c+c{[(l~2ld+d{) [I h + l - I h ~ + ~  (c[c~[(l,2[dTd~) N hm[[  A+ 
k > i  m ~ i , k  n k > i  m # i , k  n 

+Y,Y,(C~Cklf~12[d~dk) N Z+-, I] X~. (19) 
i k m ~ i  n ~ k  

These expressions are very simple to evaluate, once the integrals in terms of these 
corresponding orbitals are available. However, they are usually not available, 
since they were calculated in terms of some set of basis orbitals {X} into which 
{a ~} and {b ~} are expanded. Using (15) and (16) the sets of corresponding 
orbitals can be expressed in these basic orbitals: 

e, - Y~ xpC.% (20) 
P 

t r  d'[ = Z xeDv, �9 (21) 
P 
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Substitution of (20) and (21) into (18) and (19) gives for the matrix elements: 

= X <x, la,lxq){X Cio+Dq + II A+ H A~+~., CpiDq, H X~ H x .  +} (22) 
p,q i m ~ i n 

12= ~ (XpX~[~12]XqXs)B(pr, qs) 
p,q,r,s 

with 

{ ~i C rk D sk B ( p r ,  qs) = ( 1  - - P q s )  C p i D q i +  + ~ + + 
�9 k ,~i  

i m~:i  n 

m ~ i , k  

(23) 

+ E C;~D~ E C~kD~k [I A, .H A+} 
i k ~ i  m / i , k  n 

+~ + + Cv~Dq~C2kDTk I][ A+ [I A~. (24) 
i k mr~i n ,~k  

Here Pqs interchanges the indices q and s. The four-index term B (pr, qs), which 
is in fact a transformed second order cofactor, can be factorized. In order to 
show this we introduce the following notation: 

o- ~ ~ t  o- o- o- - 1  Xpq Cp, Dqi(Ai ) (25) 
i 

r (5 o- Y~.pq = Cv.Dq~ (26) 

5 = [ I '  A+ I I '  A~. (27) 
m n 

The prime on summation and multiplications indicates that terms with A~ = 0 
are excluded. The acutal form of the factorized cofactors depends on the number 
of  zero eigenvalues of  the overlap matrices. I f  none of the overlap eigenvalues 
is zero, (24) can be written as 

B(pr, qs) = A{(1 -pqs)(XpqXr + + Xv~Xr-~) + XvqX,s} (28) 

and the one electron matrix element is simply 

I, = zX E (x, ln,lxq)( X;q + X ;q) �9 (29) 
P,q 

I f  one of the overlap eigenvalues is zero, A~ = 0, one of the first two terms in 
(24) is zero and we have 

cr o- o- O-' B(pr, qs) = dx{2(1 -Pqs) Y.,eqXrs + Y~,pqXrs}, o-'• o" (30) 

:, =a Z (x,,ladxJ g ~.,,q (31) 
P,q 

In case of  two zero overlap eigenvalues, two cases must be distinguished. 

Firstly, if the zero eigenvalues belong to the same spin, A~ = A~ = 0, only one of 
the first two terms in (24) is nonzero, and we have 

B(pr, qs) = z~(1 -pqs) YS,pq yo-~, ~,. (32) 

Secondly, if the zero eigenvalues belong to different spins, A~ = A~'= 0 with 
or' r or, the first two terms in (24) are zero: 

o- B(pr, qs) = A Y~,pq Y~)~ (33) 
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An essential practical advantage of employing Eq. (23) with (28), (30), (32) or 
(33) is that a four index transformation is avoided and replaced by the calculation 
of the matrices X § and X - ,  which is equivalent to performing a two index 

o" transformation. Note, that Y ,  is a simple matrix product of two row vectors. 

The method has been implemented in a program, GNOME [25]. U ~ and V ~ are 
calculated using a standard single value decomposition technique. Subsequently 
C ~ and D ~ are evaluated, and from these the "transformed cofactors" X ~ are 
evaluated. Integrals for the calculation of the one electron matrix elements are 
evaluated directly in the program. In the two electron part a file of electronic 
repulsion integrals, generated by our SCF- and CI-package SYMOL [26], is 
processed sequentially. For clarity in the expressions involving summations over 
basis functions, no use is made of the permutation symmetry with respect to the 
indices p, q, r, s. In the actual program the above formulas are implemented using 
the unique two electron integrals only. 

Recently, rather similar considerations have been presented by Petsakalis et al. 
[27]. 
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